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Reverse horseshoe and spiral templates in an erbium-doped fiber laser
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Time series obtained from the emission of an erbium-doped fiber ring laser with sine-wave pump modulation
have been analyzed in order to determine the topological structure of the underlying chaotic attractor. With
appropriate modulation conditions, topological structures not often observed in experimental systems have
been found: the reverse horseshoe and the spiral template. The method employed for template determination is
not conventional as it takes profit of the high dissipation of the system, which allows one to simplify dramati-

cally the general procedure of analysis.

DOI: 10.1103/PhysRevE.79.046213

I. INTRODUCTION

Since the moment that the concept of chaotic attractor
was proposed, the problem of its characterization arose. Sev-
eral parameters were suggested, some of them are widely
used today such as Lyapunov exponents, fractal dimension,
or entropies, which are useful to quantify the degree of com-
plexity of the chaotic attractor. Nevertheless, the information
provided by these parameters is reduced because they do not
describe the attractor structure. In order to do so, an object
suitable to characterize the attractor (the template) and a pro-
cedure to find this object have been proposed for systems
whose dynamics can be modeled by a three-dimensional
phase space or which rapidly relax to a three-dimensional
subspace of the phase space. Both the object and the proce-
dure are based on the Birman-Williams theorem [1,2] which
shows that there is a one-to-one correspondence between the
periodic orbits in flows in R? X S' having a contracting direc-
tion and the orbits in a branched manifold which can be
thought of as the “limit for infinite contracting rate” of the
flow. Such a branched manifold is called “template” or “knot
holder.” In general, a template may be a very complex object
(see [3] for a thorough template classification), but templates
required to describe physical phenomena are much simpler,
as explained in Sec. II. They can be fully characterized by
means of integer numbers, which allow one to get a clear
answer with regard to the validity of a theoretical model
candidate to account for an experimental time series: if the
analysis of the theoretical and the experimental time series
provides different templates, the model is not valid, at least
with the parameters chosen for the simulation (when dealing
with real parameters, frequently the answer is not that clear:
whether the model is valid or not depends on the tolerable
difference between the theoretical and experimental values
of the parameters chosen; in the end, tolerance is a subjective
matter).

Concerning the procedure to find the template, it is based
on a rather straightforward consequence of the Birman-
Williams theorem [1,2,4]: the unstable periodic orbits
(UPOs) in the flow present the same linking numbers than
their projections in the template. The procedure allows deter-
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mination of the template which rules the dynamics of a sys-
tem departing from a time series. This technique has been
described in several references (see, for instance, [5-7] and
especially Appendix A of [8] for a detailed explanation). An
interesting different procedure based on the study of the
UPOs’ braids can be found in [4,9]. Several authors have
applied these topological analysis techniques to a number of
dynamical systems [4-15].

We present the analysis of two time series extracted from
the emission of an erbium-doped fiber ring laser. The interest
of the results obtained is double. On the one hand, the system
is highly dissipative (the laser cavity losses are around 85%).
Due to this property, the Poincaré sections (PSs) obtained
after a suitable embedding turn out to be thin enough to be
considered as a line. This fact allows one to make use of
methods of analysis habitually impossible to apply and sim-
pler than usual. On the other hand, the templates which sum-
marize the topological structure of the two corresponding
attractors are found to be a reverse horseshoe and a spiral
template. The interest of these structures is due to its excep-
tionality: in most of the previous studies on experimental
systems, the template obtained is a Smale horseshoe, often
with zero global torsion. Structures such as the reverse horse-
shoe or the spiral template have been very scarcely reported.
Particularly, reports on the reverse horseshoe reduce to [13],
while there are a few more reports on spiral templates: they
can be found in [11,16-18]. Results different from the ubig-
uitous Smale horseshoe are attractive because they enforce
the usefulness of topological analysis: obviously, a technique
of analysis which would always provide the same final result
would present no interest; it is the existence of a richer va-
riety of possible solutions in nature which endows templates
with practical relevance.

II. SUMMARY OF THE PROCEDURE OF ANALYSIS

We consider convenient to provide here a brief review of
the topological analysis procedure. Its aim is the determina-
tion of the template which rules the dynamics of a given time
series. In general, templates present several branches which
stem from and converge to different trunks [3,11], but up to
the moment templates with only one trunk have sufficed to
model experimental time series, so we will restrict ourselves
to them. These templates are fully characterized by pointing
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out their branches’ torsions, the number of rotations of each
branch around each one of the other branches, and the piling
order of the branches when they converge to a single trunk.
Besides, templates compatible with a physical phenomenon
must satisfy a continuity condition: if we denote the action of
the flow on a point x in phase space after a time ¢ has passed
as @ ,(x), the following condition must be satisfied:

lim[®,(x + &) — D,(x)]=0. (1)
e—0

This requirement implies several relations among the tor-
sions of the different branches as well as among the number
of turns of the different pairs of branches: for instance, the
torsion of two consecutive branches must differ in one half-
turn.

Once an embedding has been constructed from the experi-
mental time series, the initial step of the procedure is the
identification of UPOs in the time series under study. UPOs
are identified by looking for close returns in a PS (“close
returns” are intersections of the orbit with the PS whose dis-
tance is less than a suitable upper bound). Several techniques
have been proposed [19-21]. The UPO period is easy to
determine: if the close returns correspond to two consecutive
intersections of the flow with the PS, it deals with a “period
1 orbit. In general, if N—1 intersections occur between the
close returns found, the period of the orbit detected is N.
Next, the linking numbers of each pair of UPOs as well as
the self-linking number of each UPO must be computed. If a
generating partition can be established prior to the analysis
(for instance, if the system presents a one-to-one first-return
map), the UPO symbolic names are clearly defined. For each
linking number or self-linking number determined, an equa-
tion can be formulated which relates this linking number
with the above-mentioned features necessary to characterize
the template [8,15,22]: the piling order of the branches, their
torsions, and the number of rotations of each branch around
each one of the other branches. If enough linking numbers
are available, it is possible to configure a system with suffi-
cient equations to determine all the elements of the template
and insertion matrices.

Nevertheless, usually no generating partition can be estab-
lished beforehand. Therefore, neither the number of template
branches nor the orbit name is known before the analysis. In
this case, the way to proceed [8,15] consists of starting con-
sidering a template as simple as possible: with only two
branches. All combinations of orbit names with two symbols
must be tried. Some of them may give rise to an inconsistent
system of equations or to a consistent system of equations
whose algebraic solution (or solutions) corresponds to non-
sense template parameters (for instance, noninteger number
of half torsions of any branch or templates not compatible
with the continuity requirement). In both cases, the corre-
sponding combinations are ruled out. If no combinations giv-
ing rise to a valid template solution are found, one more
branch is added to the template and the process is iterated
until one or several solutions compatible with a certain com-
bination of orbit names are found.

Application of the topological analysis procedure does not
always lead to a right unique template. Of course, possibly
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the template obtained will be wrong if there are mistakes in
UPO identification or in the computing of the linking num-
bers (certainly, both operations are not trivial, mainly in ex-
perimental signals which are unavoidably affected by noise).
But even in case that all UPOs and linking numbers have
been obtained correctly, sometimes there are problems in the
identification of the template because there are not enough
data. Two kinds of problems can be observed: either different
possible solutions are found, because the linking numbers
obtained are compatible with various combinations of UPO
names, each one corresponding to a different template, or the
procedure leads to wrong solutions—templates compatible
with the set of linking numbers obtained with less number of
branches than the template that really rules the system dy-
namics. Obviously, none of these problems appear in cases in
which a one-to-one return map can be found: in these situa-
tions, both the number of branches in the template and the
name of each UPO are clearly defined, and a few UPOs
suffice to determine the template unambiguously.

III. ANALYSIS AND RESULTS

Before presenting the results, we establish the notation
to be used. As in [5], we characterize a template with
N branches by means of two matrices: one of them is an
N XN matrix called T in which T}; is the number of half-
turns of branch i (i=0,1,2,...) and T;; (i#) is twice the
linking number of the period-1 orbits embedded in branches
i and j; the other one is a 1 XN array I whose element /;
expresses the order of branch j within the pile formed by the
whole set of branches when they converge into a single trunk
(the higher the I}, the higher the branch j appears in the pile).
On the other hand, a period-m UPO which consecutively
visits branches i;,i,,...,i, will be referred to as iji5...i,,.
As usually, certainly all cyclic permutations of these sym-
bols are different names for the same orbit, but they denote
different intersection points between the UPO and a given
PS (so, for instance, the orbit ii, intersects any PS at two
points: the one called i;i, is placed in the region i; of the
generating partition and the one called i,i; belongs to region
iy).

We have analyzed the emission of an erbium-doped ring
laser with sine-wave modulated pump power. By choosing
appropriate working conditions (average pump power, modu-
lation depth, and modulation frequency), the laser emission
shows chaotic behavior [23,24]. Several series x(z;) in differ-
ent working conditions corresponding to chaotic behavior
have been measured. The time series spread around 10*
modulation periods, with 80—100 samples per period. A usual
embedding for periodically driven systems was employed:
[x(2;),x(t;+7),P(t;)], P(t;) being the sine-wave modulation
phase at the time instant #; and 7 being around 5% of the
pump modulation period. For each time series, various PSs
for different fixed modulation phase values were drawn. The
choice of 7allows us to obtain PSs without self-intersections
(which appear if 7 is too big; in some of our time series,
self-intersections in the PSs were observed with 7 around
10%) and not squeezed to the x(7;+7)=x(z;) line (an effect
appearing if 7is too small which makes the PS useless, as no
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FIG. 1. (Color online) Poincaré section for pump modulation
frequency f=3.55 kHz, modulation index m=0.72, and average
pump power of 44 mW (pump wavelength: 1480 nm). The different
dots represent intersections of different UPOs with the Poincaré
section.

structure can be appreciated in it). On the other hand, a test
based on principal component analysis corroborates that
three dimensions suffice to describe this dynamical system
correctly.

In the analysis of the series presented here we take profit
of dealing with a highly dissipative system. In such situation,
when representing its corresponding attractor in phase space
one may expect to obtain PSs equivalent to a section of the
template trunk, usually referred to as “branch line.” A con-
tinuous parametrization all along this one-dimensional object
can be defined, so that the first-return map with regard to the
parameter chosen is an application. Besides, the kneading
theory fixes the order of the semiflow intersections with the
branch line and particularly the order of the UPO intersec-
tions. Therefore, a PS whose cloud of points is (approxi-
mately) distributed along a line is a candidate to constitute a
good counterpart of the template branch line. In order to
decide whether this PS is finally a good approximation of the
branch line, a parametrization is defined and the first-return
map with regard to the parameter chosen is drawn. Typically,
the first-return map consists of a cloud of points distributed
along a “relatively thick line” (the more dissipative the sys-
tem, the thinner the line; a strictly one-dimensional plot
would only be obtained in the limit of infinite dissipation). If
the first-return plot obtained is one to one (save for the thick-
ness of the cloud of points obtained), the PS can be consid-
ered a good representative of the branch line. Furthermore,
the order of the UPOs marks both in the PS and in the first-
return map must match the order fixed by the kneading
theory.

Depending on our laser’s working conditions, up to the
moment we have found horseshoe, reverse horseshoe, and
spiral templates. For the reasons previously commented, we
consider the latter two as especially interesting, so we focus
this work on the presentation of one example of each.
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FIG. 2. (Color online) First return map as a function of the Z
parameter obtained from the Poincaré section of Fig. 1. The differ-
ent dots represent the Z parameters corresponding to the UPO
intersections.

A. Reverse horseshoe

Figure 1 shows a PS in which the intersections of some of
the UPOs found are pointed out (for the sake of clarity, we
consider convenient not to show the intersections of all the
UPOs found). The PS clearly meets the requirement of being
approximately arranged along the line sketched in the plot
(called L from now on). We define the coordinate Z of any
point P belonging to L as the distance from the L tail to P
along L, normalized so that Z=1 for the L head. For any
point Q of the PS, we define its Z coordinate as the one of
the point belonging to L closest to Q. Figure 2 shows the
first-return map with regard to the Z coordinate. The cloud of
points obtained appears arranged along a line corresponding
to a one-to-one map. According to it, two regions [labeled 0
and 1] are enough to get a generating partition. The precise
borderline between these regions is not perfectly defined. It
could be achieved by means of the method shown in [25],
but it is not necessary in this work: all the UPO intersections
shown are far enough from the minimum, so that the region
to which each one belongs is obvious. Therefore, the orbit

names can be easily established: 1a=0, 2a=10, 4a=1000,
5a=10000, and 6a=100000.

On the other hand, the linking numbers of the UPOs de-
tected were computed (Table I). The only template with two
branches compatible with Table I is given by the following T
and / matrices:

TABLE I. Linking numbers between the UPOs found in the time
series corresponding to Fig. 1.

0 10 1000 10000 100000
0 0
10 11 11
1000 22 45 67
10000 28 56 112 112
100000 33 67 134 168 167
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TABLE 1II. Left: order of the intersections of orbits 6, E, ﬁ,
10000, and 100000 with the branching line, according to the knead-
ing theory [considering template (2)]. Right: Z parameter obtained
for intersections of orbits la, 2a, 4a, 5a, and 6a with the PS ac-
cording to Fig. 1.

Symbolic sequence Z parameter

01000 0.051
010000 0.065
0100 0.082

01 0.159
00010 0.234
000100 0.260
0001 0.260
000001 0.345

0 0.389
000010 0.444
00001 0.460
0010 0.582
001000 0.614
00100 0.644
10 0.745
1000 0.796
100000 0.849
10000 0.886

(n 12)
T =
12 12

that is, to say, a reverse horseshoe with an additional global
torsion of five turns.

Note that some linking numbers shown in Table I are not
possible if the underlying template is a Smale horseshoe: for
instance, a linking number is equal to 45 between a period 2
and a period 4 UPO. Therefore, this result suffices to make
sure that the system dynamics is organized according to a
template different to the standard Smale horseshoe.

Finally, as an additional evidence of the correctness of the
method employed, it is worthwhile to observe that the points
corresponding to the UPOs follow the order fixed by the
kneading theory both in the PS [Fig. 1(a)] and in the first-
return map [Fig. 1(b)]. In order to facilitate the comparison,
Table II provides the order of the different UPO intersections
according to the kneading theory and their corresponding Z
coordinates. The coincidence between kneading theory and
Fig. 1 goes still further: there is a correlation between the
distances between the UPO marks in Fig. 1 and the number
of common symbols at the beginning of their respective sym-
bolic chains. For instance, it is not surprising that the UPO
marks corresponding to 00010, 000100, and 0001 appear
close together, as they have seven common symbols at the
beginning of their symbolic names. The same can be said
about 000010 and 00001, which start with the same nine
symbols.

(1 2) (2 2) . 5
22+5><22,I_( 0), (2)
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FIG. 3. (Color online) Poincaré section for pump modulation
frequency f=3.65 kHz, modulation index m=0.70, and average
pump power of 38 mW (pump wavelength: 1480 nm). Intersections
of the lowest period UPOs with the Poincaré section are shown in
(a) and intersections of other UPOs are pointed out in (b).

B. Spiral template

The procedure summarized above has also been applied to
the PS shown in Fig. 3. For the sake of clarity, only the
lowest period UPOs found have been represented in Fig.
3(a), while some other UPOs significant in the analysis (as
explained next) are shown in Fig. 3(b). The first-return map
obtained is shown in Fig. 4. In this case, the map presents a
maximum and a minimum which means that there are three
regions in the generating partition, labeled as 0, 1, and 2.
Again, the borderlines between these regions cannot be es-
tablished precisely, especially the one between regions 1 and
2, corresponding to a considerably smoothed minimum; that
is why we separate regions 1 and 2 by means of a shaded
“area of uncertainty.” However, there is no doubt about
the symbolic names corresponding to most of the UPOs

shown: la=1, 2a=20, 2b=21, 2¢=10, 3a=210, 4a=2120,
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FIG. 4. (Color online) First return map as a function of the Z
parameter obtained from the Poincaré section of Fig. 3. The differ-
ent dots in (a) and (b) represent the Z parameters corresponding to
the UPO intersections shown in Figs. 3(a) and 3(b), respectively.
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Branch 1

Branch 2

Branch 0

FIG. 5. Folding mechanism of an outside-to-inside spiral tem-
plate with three branches.

and 8a=10101021. Concerning UPO 7a, one of its marks
appears in the maximum of the first-return map, so we con-
sider two possible symbolic names: 1202102 and 1212102.
On the other hand, one of the marks of the UPO 6a appears
in the shaded area. Therefore, two symbolic names are pos-
sible: 101021 and 201021.

Table III shows the linking numbers between each pair of
these UPOs, save for the cases in which there was uncer-
tainty in its determination due to noise in the experimental
time signal. The only template compatible with the linking
numbers found and the established UPO symbolic names is

8§ 8 8 000 222
T=({8 9 10 (|=]10 1 2|+4X|2 2 2],
8 10 10 02 2 222

I=(0 2 1), (3)
that is to say, an outside-to-inside spiral [8] with a global
torsion of four turns, whose folding mechanisms are summa-
rized in Fig. 5. It must be cleared up that template (3) is
the only compatible template no matter which ones of
couples of possible symbolic names for orbits 6a and 7a are
considered. On the other hand, it is worthwhile to underline
that only two linking numbers (LKs) in Table III allow us to
make the difference between the template found and an
inside-to-outside spiral [8]: it deals with LK(6a,7a) and
LK(7a,10101021).

TABLE III. Linking numbers between the UPOs found in the time series corresponding to Figs. 3 and 4.
Asterisks appear instead of the linking numbers whose determination has been impossible due to the noise in

the experimental time signal.

1 20 21 10 210 2120 6a 7a 10101021

1 0
20 9 9
21 9 18 9
10 9 18 18 9

210 14 27 28 27 28

2120 18 * * 36 55 55
6a 27 54 55 . * 109 135
7a 32 63 65 63 97 . 191 194

10101021 36 72 73 . * 145 * 254 251
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Furthermore, as in the reverse horseshoe case, the order of
the UPO intersections predicted by the kneading theory
agrees with the one observed both in Figs. 3 and 4 (in this
case a table similar to Table II seems to us too lengthy to be
included here). Besides, UPO intersections which appear es-
pecially close correspond to pairs of symbolic sequences
whose beginnings share several common symbols: 021 and
0212 almost overlap; likewise 21 and 2120; and especially,
orbits 6a and 8a overlap four times, not surprisingly because
they share a common sequence of at least five symbols:
01021.

IV. CONCLUSIONS

Two chaotic time series obtained from the emission of an
erbium-doped fiber laser with appropriate sine-wave pump
modulation conditions have been analyzed. It has been found
that the corresponding chaotic attractors present topological
structures not often observed in experimental systems: the
reverse horseshoe and the spiral template. These results, dif-
ferent from the Smale horseshoe commonly obtained in other
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experimental studies, contribute to enforce the relevance of
topological procedures of characterization aimed at the tem-
plate determination.

Furthermore, application of an especially simple method
of analysis has been possible, thanks to dealing with a highly
dissipative system. This feature allows one to find PSs which
constitute good approximations of the template branch line.
By a suitable parametrization all along these PSs, one-to-one
first-return maps with regard to the parameter chosen are
obtained which lead to the determination of a generating
partition precise enough to assign symbolic names to most of
the different UPOs found. This property simplifies the pro-
cedure of analysis dramatically with regard to the usual situ-
ation in which a generating partition is not available before-
hand. Besides, it allows one to check the consistency of the
results obtained by comparing the order of the UPO intersec-
tions found with the order fixed by the kneading theory.
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